A Quantitative, Topological Model of Reconnection and Flux Rope Formation in a Two-Ribbon Flare

نویسندگان

  • D. W. Longcope
  • C. Beveridge
چکیده

We present a topological model for energy storage and subsequent release in a sheared arcade of either infinite or finite extent. This provides a quantitative picture of a twisted flux rope produced through reconnection in a two-ribbon flare. It quantifies relationships between the initial shear, the amount of flux reconnected and the total toroidal flux in the twisted rope. The model predicts reconnection occurring in a sequence which progresses upward even if the reconnection sites themselves do not move. While some of the field lines created through reconnection are shorter, and less sheared across the polarity inversion line, reconnection also produces a significant number of field lines with shear even greater than that imposed by the photospheric motion. The most highly sheared of these is the overlying flux rope. Since it is produced by a sequence of reconnections, the flux rope has twist far in excess of that introduced into the arcade through shear motions. The energy storage agrees well with previous calculations using the full equations of magnetohydrodynamics, and the agreement improves as the topology is defined using increasingly finer detail. This is the first comparative study of the application of a topological model to a continuous flux distribution. As such it demonstrates how the coarseness with which the photospheric flux distribution is partitioned affects the accuracy of prediction in topological models. Subject headings: MHD — Sun: corona — Sun: magnetic fields — Sun: flares

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predictions of Energy and Helicity in Four Major Eruptive Solar Flares

In order to better understand the solar genesis of interplanetary magnetic clouds (MCs), we model the magnetic and topological properties of four large eruptive solar flares and relate them to observations. We use the three-dimensional Minimum Current Corona model (Longcope, 1996, Solar Phys. 169, 91) and observations of pre-flare photospheric magnetic field and flare ribbons to derive values o...

متن کامل

Modeling and Measuring the Flux Reconnected and Ejected by the Two-ribbon Flare/cme

Observations of the large two-ribbon flare on 7 November 2004 made using SOHO and TRACE data are interpreted in terms of a three-dimensional magnetic field model. Photospheric flux evolution indicates that −1.4 × 10 Mx of magnetic helicity was injected into the active region during the 40-hour build-up prior to the flare. The magnetic model places a lower bound of 8×10 ergs on the energy stored...

متن کامل

Two-current-sheet Reconnection Model of Interdependent Flare and Coronal Mass Ejection

Time-dependent resistive magnetohydrodynamic simulations are carried out to study a flux rope eruption caused by magnetic reconnection with implication in coexistent flare-CME (coronal mass ejection) events. An early result obtained in a recent analysis of double catastrophe of a flux rope system is used as the initial condition, in which an isolated flux rope coexists with two current sheets: ...

متن کامل

Observational Analysis of Magnetic Reconnection Sequence

We conduct comprehensive analysis of an X2.0 flare to derive quantities indicative of magnetic reconnection in solar corona by following temporally and spatially resolved flare ribbon evolution in the lower atmosphere. The analysis reveals a macroscopically distinctive two-stage reconnection (Moore et al. 2001) marked by a clear division in morphological evolution, reconnection rate, and energy...

متن کامل

Magnetic Reconnection Rate and Flux-rope Acceleration of Two-ribbon Flares

Forbes & Lin derived simple equations to link the properties of magnetic reconnection in the corona to observed signatures of solar flares. We measured the photospheric magnetic fields and the flare ribbon separation speeds then applied these equations to derive two physical terms for the magnetic reconnection rates: the rate of magnetic flux change ’rec involved in magnetic reconnection in the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007